Breaking records: structural subtyping as a language design principle
A pre-abstract for FABRIC

Dynamically typed languages like Python or JavaScript are in widespread use. Their main
advantage is flexibility, as the same code can be freely reused for different types, with the pro-
grammer unconstrained by a static type checker. Despite the usefulness of static type systems —
like those in the ML family — dynamic and static disciplines have been at odds for decades.

The design of statically typed languages primarily focuses on nominal types with limited
subtyping — simplifying problems like type inference and program optimisation. Meanwhile,
dynamically typed languages essentially rely on structural types with implicit subtyping (often
termed duck typing). Thus, the real static-dynamic divide is even deeper than it might first seem:
it has also been co-mingled with nominal-structural types and presence of nuanced subtyping.

Nevertheless, there have been many recent developments to bring static type systems to dy-
namically typed languages — either through optional typing (like in Python), or typed dialects
(like TypeScript for JavaScript). In practice, these attempts suffer from a confused relationship
between nominal and structural types. TypeScript lacks proper support for nominal types — cru-
cial for some abstractions — while Python’s typing discipline often prefers them over structural
types (in contrast to programs in practice). These existing systems have also failed to satisfac-
torily type workloads common in dynamic languages, such as arrays and dataframes. In this
work we show we can address these by embracing structural types. We conclude there is a need
to not only reconcile the predictability of static languages with the flexibility of dynamic ones,
but also to give particular consideration to both nominal and structural types.

Thanks to the recent development of theory of algebraic subtyping it has become possible
to bring ML-style type inference to languages with static typing and structural subtyping. It
is a milestone bridging the design gap between the static and dynamic disciplines, enabling
annotation-free checking of more expressive programs.

Iadvocate for a language design with a focus on structural subtyping, while acknowledging
the crucial role of nominal types. I present the design of the statically typed FABRIC language
and its prototype compiler targeting the modern WEBASSEMBLY standard. FABRIC features ex-
pressive structural types for arrays, and user-extensible inference rules for checkable properties.
The compiler emits efficient representations for structural record and variant types. FABRIC's
design approach enjoys the safety and performance of static languages, while also limiting the

loss in expressivity of dynamic languages and preserving their extensibility.

Jakub Bachurski < jkb55>



